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a b s t r a c t

In this paper, a novel automatic image segmentation method is proposed. To extract the foreground of
the image automatically, we combine the region saliency based on entropy rate superpixel (RSBERS) with
the affinity propagation clustering algorithm to get seeds in an unsupervised manner, and use random
walks method to obtain the segmentation results. The RSBERS first applies entropy rate superpixel
segmentation method to split the image into compact, homogeneous and similar-sized regions, and gets
the saliency map by applying saliency estimation methods in each superpixel regions. Then, in each
saliency region, we apply the affinity propagation clustering to extract the representative pixels and
obtain the seeds. A relabeling strategy is presented to ensure the extracted seeds inside the expected
object. Additionally, in order to enhance the effects of segmentation, a new feature descriptor is designed
using the covariance matrices of coordinates, color and texture information. Experiments on publicly
available data sets demonstrate the excellent segmentation performance of our proposed method.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

According to certain similar criteria of some low-level visual
features, such as color, texture, shape etc., image segmentation
refers to partition a single image into non-overlapping regions, and
then extract the objects of interest under the complex background
environment. It has been found, in a wide range of applications,
to be not only a fundamental problem but also the key problem in
the research of image analysis, pattern recognition [1], computer
vision, medical image processing [2], and even image understanding.
It is precisely because of its important academic value and great
potential for practical application, a lot of research works in this area
have been developed in the last 2 decades. According to the fact
whether requiring the user's participation in the segmentation
process, existing image segmentation methods can be generally
divided into automatic and interactive methods.

Automatic approaches do not require any user participation
and prior information about the image. Given an image, these

methods can obtain segmentation results automatically. Shi and
Malik [3] defined image segmentation as a graph partitioning
problem and developed normalized cuts criteria to partition the
graph. In [4,5] level set framework is developed for image
segmentation, which is based on boundary contours evolution.
Mean shift [6] method is still considered as the most important
algorithm for color image segmentation. Recently, an unsuper-
vised image segmentation algorithm was presented in [7]. This
method modeled each phase using multiple piecewise constants,
and minimized the new energy model with graph cuts optimiza-
tion method. Ugarriza et al. [8] adopted the dynamic region
growing and multi-resolution merging technique for automatic
natural image segmentation. Browning et al. [5] proposed the
ViSTARS neural model which uses motion information to segment
objects in response to video inputs from real and virtual environ-
ments. Although those approaches can automatically partition
image into some separate regions, due to the lack of prior
information about the objects in an image, it is hard to provide
the ideal segmentation results about real-world natural scene
images.

Interactive image segmentation methods incorporate minimal user
interactive into the segmentation process. Due to its good segmenta-
tion performance, interactive methods have attracted significant
attentions in recent years. A representative segmentation method that
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belongs to the boundary-based interactive segmentation method has
been proposed byMortensen and Barrett [9]. This method requires the
user to control the mouse along the boundary of the object and place
several marks, and the Dijkstra's shortest path algorithm is then used
to finish the segmentation of the object. Another example of inter-
active segmentation method is the active contour method [10], which
is able to capture salient image contour. In this method, an initial
contour is placed near the boundary of the object of interest and the
contour is evolved to catch the object boundary.

The third method is seed-based interactive segmentation
method. The typical methods are the graph cuts based methods
[11–15] and random walks algorithm [16]. The user is asked to
provide an initial labeling of some pixels as belonging to the
desired object or background (known as seeds), and then the
algorithm completes the labeling for all pixels in the image based
on the seed clues. Here image segmentation is treated as a graph
optimization problem and the image is represented as a weighted
graph where each vertex of this graph corresponds to a pixel
or region and each edge with weight indicates the similarity
relationship between neighbor pixels. Boykov and Jolly [11]
proposed the interactive graph cuts method for gray-scale image
segmentation method, where the probability distributions of the
image foreground and background are described with histograms
of gray values, and then the min-cut algorithm is adopted to
find the globally optimal segmentation. Similarly in [12] the
authors proposed a coarse-to-fine interactive foreground extracted
method named Lazy Snapping, where the multiple average color
of these seed regions is used to build the distributions of the
foreground and background. Rother et al. proposes GrabCut [13]
method, where the Gaussian mixture model is used to model the
foreground and background and the iterative process between
model estimation and parameter learning based on graph cuts is
used to optimize the segmentation results until convergence. Tao
et al. [17,18] extended the interactive binary segmentation to
multiphase image method based on variational model and graph
cuts optimization. Hu et al. [19] presented a fast and accurate
semiautomatic contour delineation method. It uses a conditional
random field graphical model to define the energy minimization
function for obtaining an optimal segmentation, and applies a
graph partition algorithm to efficiently solve the energy minimi-
zation function. The random walks algorithm [16] treats the edge
weights as probabilities of a particle at one node traveling to
a neighboring node. Given seeds, the probability that a particle at
any unlabeled pixel first travels to the foreground or background
seeds are used as the basis for image segmentation [16,20].

These interactive methods introduced above can achieve
impressively accurate results. However, the manual interactions are

time-consuming and often infeasible in many practical applications.
These shortcomings limit the applications of the interactive methods
for image segmentation.

The segmentation quality of current interactive tools depends
heavily on the seeds extraction. To address the inherent problems of
the interactive image segmentation methods, some researchers
have been tried to develop full-automatic segmentation approaches
by integrating the saliency detection technologies. Firstly the object
seeds are extracted by some saliency detection methods, and
then one interactive segmentation method is used to finish the
final object segmentation. There are many methods to extract
saliency regions from an image based on human visual theory
[21–31]. Fu et al. [32] put forward an approach named Saliency cuts,
which designs a multi-resolution framework to provide the object
segmentation automatically. In [33], an iterative self-adaptive
framework is developed and the min-cut algorithm is used to
segment the salient objects. Cheng et al. [31] automatically initi-
alized GrabCut by binarizing the saliency map, and then iteratively
applied GrabCut to improve the segmentation results.

Recently the random walks segmentation has been introduced
to interactive image segmentation and shown to have desirable
theoretical properties and perform well in many practical applica-
tions [16]. Its major advantage is that the solution for randomwalk
energy function is exact and unique minimum. Therefore, this
method can likely achieve better performance especially in the
presence of weak boundaries and noise. However, due to the
fact that it lacks a global feature distribution model, the random
walks method is very sensitive to positions and quantities of
foreground and background seeds. It is known that the positions of
the comprehensive and uniform seeds would lead to accurate
segmentation results and reduce or even eliminate the user
interactions. However, the inaccurate selection of seeds usually
results in inaccurate region labeling results so that more user
interactions are required to extract the object of interest accu-
rately. An example of this inherent problem of random walks is
shown in Fig. 1, images with the superimposed seeds are shown in
the first row, and the corresponding segmentation is displayed in
the second row. As shown in columns 1–4 of Fig. 1, we can find
that the segmentation results vary significantly from each other
although the foreground and background seeds are all accurately
marked. Comparatively, the position of comprehensive and uni-
form seeds position leads to a more pleasant segmentation result
as shown in the last column of Fig. 1.

In this paper, we propose an automatic segmentation method
using the random walks framework. In order to extract seeds with
sufficient and accurate information automatically, this paper pro-
poses an efficient seeds extraction method by integrating the

user-defined 

seeds 

segmentation 

results 

Fig. 1. Dependency on the seeds of random walks algorithm. The first row shows the original images (#0_3_3524 from the saliency object database Free 1000) with
superimposed user-specified seeds (green lines (points) for the foreground and blue lines (points) for background) and the second row displays the segmentation results
obtained from the corresponding seeds. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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entropy rate superpixels [34], saliency estimation and affinity
propagation clustering method [35]. We first combine the super-
pixel segmentation method with the global contrast based
saliency estimation approach to obtain the region saliency based
on entropy rate superpixel (RSBERS). The entropy rate superpixel
segmentation algorithm [34] has the potential to improve the
overall segmentation results as well as to reduce computation time.
Compared with the traditional global contrast based algorithm, the
RSBERS method can avoid the effect of noise and the elements loss
by averaging the saliency values in each superpixels region and lead
to more accurate saliency map. In each superpixel saliency region,
we apply the affinity propagation (AP algorithm) [35] indepen-
dently to obtain “exemplars”, which are then labeled by a fixed
saliency threshold to obtain seeds. Due to the use of the entropy
rate superpixel algorithm, we can find that the extracted seeds can
cover the foreground and background comprehensively and uni-
formly. This is extremely helpful to provide sufficient and accurate
information for the succeeding random walks segmentation. To
make sure the automatically generated seeds are inside the interest
object, a seed relabeling strategy is proposed to eliminate the
mislabeled seeds.

Moreover, we integrate the texture feature [36–38] with the
color information in the proposed algorithm framework for more
accurate seeds extraction by RSBERS method and better segmen-
tation performance by random walk algorithm. We use the multi-
scale nonlinear structure tensor (MSNST) to describe the texture
feature of images [39–42]. We then design a new strong feature
descriptor for local pixel neighborhoods by using covariance
matrices of low-level features as proposed by [43,44]. The main
advantage of using covariance matrices as local descriptors is that
they enable efficient fusion of different types of low-features, such
as color, texture, coordinates information etc.

The overview of the proposed methods is presented in Fig. 2.
Firstly, the proposed features integrating color and texture infor-
mation are extracted from the original image. Secondly the
saliency estimation is produced and the superpixel segmentation
is obtained by entropy rate method. And then the two results are
combined to get the saliency regions extraction result. Thirdly, the
AP clustering algorithm is applied to each superpixel saliency
region to discover the representative pixels and the entropy
threshold technique is used to obtain the salient seeds which are
considered as the seeds for random walk segmentation. Subse-
quently, the seed relabeling method is used to remove the
unreliable seeds to ensure that the seeds are all inside the object.
Finally, the randomwalk is used to get the last segmentation result
based on the seeds.

The remainder of this paper is organized as follows: in Section 2,
a new feature descriptor is constructed by using covariance matrices
of coordinates, color and texture information. Section 3 introduces
our automatic image segmentation method in detail. In Section 4,
a number of comparison experiments using the real natural scene
images are given to demonstrate the superior performance of our
proposed method, followed by a brief conclusion in Section 5.

2. Construction of feature descriptor

With regard to the performance of image segmentation,
it depends heavily on the accuracy of feature descriptor. In order
to improve the ability of feature description, a new strong color–
texture feature descriptor for local pixel neighborhoods was con-
structed in this section by using covariance matrices of coordinates,
color and texture information.

Input image

Extracting features using the
new proposed feature descriptor

Entropy rate

Superpixels segmentation

Superpixels segmentation

result

Saliency estimation

Saliency map

RSBERS

AP algorithm

Threshold

Seeds obtained

Seeds relabel

Seeds obtained after relabel

Random walks

The final segmentation
result

combine the superpixel
segmentation and saliency

estimation

Fig. 2. Flow chart of automatic image segmentation.
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Given the image I, we can use the nonorthogonal discrete
wavelet to compute multi-scale structure tensor [45]. Let Ts be the
s-th scale tensor of MSST, which can be constructed using the
tensor product of gradient as

Ts ¼ ∑
Nc

n ¼ 1
ð∇ðInθsÞn∇ðInθsÞTnÞ

¼ α�2s

∑
Nc

n ¼ 1
ðDx

n;sÞ2 ∑
Nc

n ¼ 1
ðDx

n;sD
y
n;sÞ

∑
Nc

n ¼ 1
ðDx

n;sD
y
n;sÞ ∑

Nc

n ¼ 1
ðDy

n;sÞ2

0
BBBB@

1
CCCCA
;

s¼ 0;1; U U U ; S�1 ð1Þ
where S represents the total number of scales in the multi-
resolution decomposition, and θs is the corresponding convolution

Fig. 3. Multiscale nonlinear structure tensor with four scales: (a) original image (#124084 from the Berkeley segmentation database BSD300); (b)–(d) the first scale
of MSNST with s¼0; (e)–(g) the second scale of MSNST with s¼1; (h)–(j) the third scale of MSNST with s¼2; (k)–(m) the fourth scale of MSNST with s¼3.
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operator in s-th scale. α is the shrinkage coefficient of wavelet. The
subscript n denotes the n-th color channel of the image I and Nc is
the total number of the color channels. The notations Dx

n;s and Dy
n;s

represent partial derivatives of the n-th color channel of the image
in s-th scale. The nonlinear diffusion filtering is adopted to
smoothen the noises and enhance the edges simultaneously to
obtain MSNST.

For most of the natural image, their texture information is
mainly focused on a few scales and the overlarge S will include
lots of information redundant. Fig. 3(a) shows an image and Fig. 3
(b)–(m) displays the corresponding MSNST of four scales. It can be
seen from the figure that the main texture information is mostly
concentrated in the first two scales. Consequently, we only use the
first two scales, which s¼0 and s¼1, in our new feature description.

Since the MSNST matrices set have different feature structures
from color and coordinate vector, they cannot be used to construct
covariance matrices directly. To address this problem, we first
straighten the two-dimensional matrix of MSNST into a one-
dimensional row vector. Consider that the matrix of MSNST is
symmetric, texture information can be expressed as Tsð1;1Þð
Tsð1;2Þ Tsð2;2ÞÞ. Therefore, we use a 11-dimensional feature vector
f by integrating the coordinates, texture information, and the Lab
color (for Lab, it was shown to be approximately perceptually
uniform) for constructing covariance matrices which is defined as

f ¼ ½xyLabT0ð1;1Þ T0ð1;2Þ T0ð2;2Þ T1ð1;1Þ T1ð1;2Þ T1ð2;2Þ� ð2Þ

where x and y are the normalized pixel coordinates, L, a and b are
the pixel values of the Lab color space and T0ð1;1Þ; T0ð1;2Þ;
T0ð2;2Þ; T1ð1;1Þ; T1ð1;2Þ and T1ð2;2Þ are the corresponding first

and second scale MSNST. For instance T0ð1;1Þ ¼ a�2s∑̂
Nc

n ¼ 1ðDx
n;sÞ2

4

,
and the “hat” denotes that corresponding component has been
nonlinearly diffused.

Then, we define a fixed neighborhood size N�N for every pixel
and calculate the symmetric 11�11 covariance matrix ∑ by

∑¼
s11 ⋯ s1 11

⋮ ⋱ ⋮
s11 1 ⋯ s11 11

0
B@

1
CA ð3Þ

sij ¼
1

N2�1
∑
N2

n ¼ 1
ðf ni �μiÞðf nj �μjÞ ð4Þ

where μi is the mean value of the i-th feature f i. Due to the fact that
the covariance matrices are symmetric, we get a 55-dimensional
feature vector containing low-level information of local neighbor-
hood for every pixel.

Taking into account the Riemannian structure of the covariance
matrices, the distances of two covariance matrices can be mea-
sured in manifold space as in [46].

3. Automatic image segmentation method

In this section, an automatic image segmentation method was
proposed. Our proposed method consists of three steps. First, we
combine the entropy rate superpixel segmentation method and
saliency estimate algorithm to obtain region saliency based on
entropy rate superpixels (RSBERS) (Section 3.1). Second, seed
extraction and relabel scheme are proposed (Section 3.2). Finally,
all extracted seeds are regard as priori information integrating
interactive random walks methods to obtain segmentation results
(Section 3.3). In Fig. 4, we visualize some intermediate states in the
process of our automatic seeds extraction method. Fig. 4(a) shows
a real natural image (#0_11_11987 from the saliency object
database Free 1000 [29]). The entropy rate superpixel segmenta-
tion results with random color are displayed in Fig. 4(b). The
results of REBERS and the boundaries of superpixel segmentation
with superimposed representative pixels (boundaries with blue
line and representative pixels with red points) are shown in Fig. 4
(c) and (d). The seeds obtained before and after relabeling scheme
are shown in Fig. 4(e) and (g), respectively. Finally, the segmenta-
tion results before and after seeds relabel scheme are shown in
Fig. 4(f) and (h).

3.1. Region saliency based on entropy rate superpixel (RSBERS)

Recently many visual saliency models and attention models
have been presented [21–31], which lead to a number of applica-
tion, such as object recognition [47–49], image segmentation [50],

Fig. 4. The detailed performance of automatic seeds extraction. The image comes from the saliency object database Free 1000 [29]: (a) original image (#0_11_11987);
(b) superpixel segmentation result with randomly color (image contain 200 superpixels) by entropy rate superpixel method; (c) the result of region saliency based on
entropy rate superpixel (RSBERS); (d) the boundaries of superpixel segmentation with superimposed representative pixels (boundaries with blue line and representative
pixels with red points); (e) seeds obtained before relabel scheme (green points for foreground marker and blue points for background marker); (f) segmentation result of our
approach without relabel scheme; (g) seeds obtained after relabel scheme; (h) segmentation result of our approach with relabel scheme. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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image retrieval [51] etc. Depending on the extent of the context
where the contrast is computed, previous methods can be cate-
gorized as local methods [22–27] or global methods [28–31]. Local
contrast based methods compute various contrast measures in a
local neighborhood of the pixel/patch. Such methods tend to
produce higher saliency values near edges. While global contrast
based methods, which use the entire image to compute the
saliency of individual pixels/patches, have the advantage of high-
light the entire objects uniformly. Consider that we focus on the
whole object in our image segmentation method, this paper adopt
the global contrast based methods.

Global contrast based saliency estimation methods have achieved
success in their own aspects, but still have certain limitations.
Typically, as shown in Fig. 5(c)–(e), the salient object can be found
well, but there may contain plenty of noises and sometimes
elements lost. The “inaccurate” problem is observed in all pixel-
based methods [28–31]. It is alleviated in region-based methods of
RC in [31], but the RC methods still have difficulties of extracting the
accurate boundary as shown in Fig. 5. These disadvantages may lead
to mislabeled seeds and eventually imprecise segmentation results.
To tackle this problem, we put forward the region saliency based on
entropy rate superpixel (RSBERS) method, which combines the
entropy rate superpixel segmentation [34] and saliency estimate
approaches. First, we use entropy rate superpixel segmentation
method to group pixels into perceptually meaningful atomic regions
(shown in Fig. 4(b)). Liu [34] studied the superpixel segmentation as
a clustering problem and presented a new clustering objective
function including two terms. The entropy rate encourages division
of images on perceptual boundaries and favors superpixels over-
lapping with only a single object, whereas the balancing term
reduces the number of unbalanced superpixels and hence preserves
object boundaries. These all favors accurate saliency estimate. Then,
in each superpixels region we average the pixels saliency value to

obtain the region saliency, which makes sure that each superpixels
saliency region shares the same saliency value. In this paper, we
integrate three different saliency estimate methods: HC [31], RC [31]
and SF [30].

The results of RSBERS are shown in Fig. 4(c) and the last column
of Fig. 5. It is observed that the RSBERS method can guarantee the
perceptual boundaries and share the same saliency value in each
superpixel region. Moreover, the use of superpixels segmentation
algorithm makes seeds extracted in following step cover the fore-
ground and background comprehensively and uniformly. It is
straightforward benefit to the segmentation results.

3.2. Seed extraction and relabel scheme

The region saliency based on entropy rate superpixel (RSBERS)
step of Section 3.1 provides a relatively satisfied saliency map. In
order to obtain comprehensively and uniformly seeds distribution
automatically, we then apply the affinity propagation clustering
algorithm (AP) [35] in each of these superpixel saliency regions to
discover representative pixels, which we call “exemplars”, from
an image.

AP algorithmwas recently proposed by Dueck and Frey. It has been
proved to be more effective than the classical clustering methods, such
as k-means, k-centers, the expectation maximization (EM), spectral
clustering [52–55] etc. AP algorithm considers all data points of
randomly selected subset as candidate centers. Using this method,
many of the poor solutions caused by unlucky initializations can be
avoided. In addition, the number of identified exemplars (number of
clusters) in AP algorithm is not required to pre-defined and influenced
by the values of the input preferences. Most important, unlike classical
clustering method, the exemplar for each cluster may not have
a real-world interpretation (for example, in k-means, the exemplar
is the mean of the data points in each cluster). The exemplar

Fig. 5. Saliency maps on three example images. The images come from the saliency object database Free 1000 [29]: (a) input images; (b) ground truth salient object masks;
(c) results from the HC method proposed in [31]; (d) results from the RC method proposed in [31]; (e) results from the SF method proposed in [30]; (f) results from our
RSBERS method.
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obtained by AP algorithm is one of the data points. It is important in
our method, because we hope that the property of the data points
can be best expression by the exemplar, which must belong to the
data points.

Fig. 4(d) shows the boundaries of superpixel segmentation with
superimposed representative pixels (boundaries with blue line
and representative pixels with red points). The use of affinity
propagation clustering algorithm [35] not only decreases the
redundancy information and reduces the following complexity of
calculation and space, but also provides sufficient and accurate
information, which is beneficial to obtain excellent segmentation
results. Note that, in order to further improve the speed of the
whole algorithm, we first perform a down-sampling processing on
each superpixel region.

Following, the representative pixels are labeled by using a
threshold (the pixels with higher saliency value than the threshold
are assigned label 1, and with lower saliency value than the
threshold are assigned label 0). The entropic thresholding techni-
que [56] is used to obtain an optimal threshold that is adaptive to
the image contents. Fig. 4(e) shows the seeds, which comprehen-
sively and uniformly covers the object and background regions,
obtained by our method (green points for foreground marker
and blue points for background marker). As we can see from the
Fig. 4(e), the extraction seeds are sometimes with wrong labels.
Due to that the object segmentation results are dominated by the
reliability of extraction seeds label in the automatic object seg-
mentation, as well as in the interactive random walks approach.
The error labeling information will greatly affect the correspond-
ing segmentation accuracy. As can be seen from Fig. 4(f), the image
is actually error-segmented. To address this problem, we propose
a seeds relabeling method, which can reduce the mislabeled seeds.

Our seed relabeling method is inspired from the iterative
energy minimization method in [13], which estimate the prob-
ability density distribution of the background and foreground
Gaussian mixture models, and then using iteratively refines the
parameters using a combination of graph cuts and EM-like
estimation until reach a maximum number of iterations or con-
vergence criteria.

In this paper, we treat the seed relabeling task as that of estim-
ating a set of binary variables X ¼ fxiAf0;1g : i¼ 1;2;…Ng ; each
indicating whether the corresponding seed belongs to foreground
or background. Similar to [13], K components Gaussian Mixture
Models (GMMs) for our obtained object seeds and background
seeds represented by Goðxi; πo; μo; ∑oÞ and Gbðxi; πb; μb; ∑bÞ

respectively. To obtain the accurate labels of the seeds, we can
construct a corresponding energy function and minimize it. Follow
the definition of traditional graph cuts [14], the energy function can
be designed as E¼UþλV where U and V denote the data term and
smoothness term respectively, and the balance factor of these two
terms are weighted by λZ0. To minimize the energy function E we
construct a weighted graph to solve the minimizing cuts problem and
update the statistical parameters of weights π means μ and covar-
iances ∑ iteratively.

After completing the processes of relabeling, we can obtain
relatively satisfied labels of all seeds and accurate segmentation
results (as shown in Fig. 4(g) and (h)). It can be found that iterative
relabeling scheme can reduce mislabeled seeds. In addition, we
should notice that the method only require minimal time, because
the number of seeds is small (about 200) when compared with the
total number of pixels of the image. We set the number of
iterations as 4, which has been demonstrated to be enough for
most of the experiments. (More verification experiments are given
in Figs. 7–9.)

3.3. Integrating automatic seeds extraction and random
walks segmentation

In the random walks method, the edge weights are treated as
probabilities of a particle at one node traveling to a neighboring
node. The edge weights function is formulate as

wij ¼ expð�βðgi�gjÞ2Þ ð5Þ

where gi indicates the image feature (in this paper, feature
descriptor introduced in Section 2) at pixel i. The value of
β represents the only free parameter in this algorithm. Given
a small number of seeds, segmentation begins with labeling a pixel
in such a way that the pixel is assigned a label with the greatest
probability if a random walker starting its walk at this pixel first
reaches a seed with that label. It is essentially an approach that
minimizes Dirichlet energy with boundary conditions.

Our studies show that the performance of the random walks
algorithm is sensitive to the distribution of the seeds. This is
mainly because the random walks algorithm lacks a global feature
distribution model. Therefore, even in the cases that the fore-
ground and background seeds are accurately marked as internal
and external, the random walks algorithm may require more
carefully user interaction to obtain an accurate segmentation.

Fig. 6. Testing the performance of the feature descriptor: (a) input images; (b) original images with superimposed seeds (green points for foreground marker and blue points
for background marker), which obtained without using relabeling scheme (using color information only); (c) segmentation results before relabeling scheme (using color
information only); (d) original images with superimposed seeds after relabeling scheme (using color information only); (e) final segmentation results (using color
information only); (f) original images with superimposed seeds before relabeling scheme (using our proposed feature descriptor); (g) segmentation results before relabeling
scheme (using our proposed feature descriptor); (h) original images with superimposed seeds after relabeling scheme (using our proposed feature descriptor); (i) final
segmentation results (using our proposed feature descriptor). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 7. Comparison of segmentation results for images which contain some saliency objects. The images come from the saliency object database Free 1000 [29]: (a) original
images; (b) results of our region saliency based on entropy rate superpixel (RSBERS); (c) original images with superimposed seeds (green points for foreground marker and
blue points for background marker), which obtained without using relabel scheme; (d) segmentation results without seeds relabel scheme; (e) seeds obtained after
relabeling; (f) final segmentation results; (g) segmentation results of Saliency cut [31]; (h) ground truths [29]. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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As discussed in Section 1, unreliable seeds usually result in region
lost or false regions. However, if the seeds cover the foreground
and background comprehensively and uniformly, the segmenta-
tion results would be greatly improved. The seeds distribution,
provided by our automatic seeds extraction method introduced in
the above section are passed as an initialization to random walks
segmentation method. Our proposed method can provide suffi-
cient and accurate information, and favors excellent segmentation
results as shown in Fig. 4(h).

4. Experiments

In our experiments, we provide a number of real natural scene
images for comparison, and these images are all from Berkeley
segmentation database BSD300 [57] and the saliency object
database Free 1000 [29]. Additionally, to visualize the segmenta-
tion results more intuitively, we color the foreground and back-
ground with a different translucent color randomly.

Fig. 8. Testing of segmentation results on natural images. The images come from the Berkeley segmentation database BSD300 [57]: (a) original images; (b) original images
with superimposed seeds (green points for foreground marker and blue points for background marker), which obtained without using relabeled scheme; (c) segmentation
results without seeds relabeled scheme; (d) seeds obtained after relabeled scheme; (e) final segmentation results; (f) segmentation results of Saliency cut [31]. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.1. Parameter settings

In this section, in order to demonstrate the performance of
image segmentation when using our proposed automatic method,
in the following sections, we chose the interactive random walks
method [16] and the Saliency cut method [31] for comparison.

The main parameter settings of the above two methods should
be given in advance for a reasonable comparison. The Saliency cut
method has two parameters to be appropriately predefined. Just
like the authors suggest, we set spatial weighting and the number
of iterations as 0.4 and 4 respectively. For the random walks
algorithm, the free parameter is fixed as 90. Here, notice that the

Input image classical random walks Our method 

#4_144_144868 

(0.9008/0.0714/ 
0.4675/4.4152) 

(0.9825/0.0168/ 
0.1273/1.9451) 

(0.9912/0.0087/ 
0.0761/0.7815) 

(0.9912/0.0087/ 
0.0754/0.7518) 

#0_12_12435 

(0.8072/0.1675/ 
0.8996/19.8705) 

(0.9708/0.0288/ 
0.2114/2.9546)

(0.9886/0.0111/ 
0.0902/0.9695) 

(0.9928/0.0071/ 
0.0636/0.5487)

#0_3_3524 

(0.6630/0.2734/ 
1.3514/20.4507)

(0.9093/0.0819/ 
0.4863/7.9517)

(0.9826/0.0173/ 
0.1392/1.1615)

(0.9828/0.0171/ 
0.1404/1.1619)

Fig. 9. The qualitative and quantitative comparisons of for classical random walks method [16] with different user-specified seeds and our proposed method. The images
come from the saliency object database Free 1000 [29].
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sources codes of the two methods can be downloaded from the
author's websites [58,59].

Additionally, some parameters of our proposed method also
appropriately predefined. Since the main texture information is
mostly concentrated in the first two scales, the scale number S in
formula (1) is set as 2. The local window size N is set to 15 in
formula (4). The number of superpixels is set to 200 in all
experiments. When implementing the AP algorithm, we set the
input preferences to be the median of the input similarities in
order to result in a moderate number of clusters. Please refer to
Table 1 for more details about parameters setting.

4.2. Comparison and analysis experiments

In Fig. 6, we test the performance of our proposed feature
descriptor. Fig. 6(a) presents a natural image, which contains rich
texture information. Through the compared results presented in
Fig. 6(b)–(i), we can find that our proposed feature descriptor has
more powerful discriminating ability. Using this new feature
descriptor, we can not only extract sufficient and accurate seeds
position, but can also obtain superior segmentation results.

We will test the comprehensive segmentation performance of our
proposed approach qualitatively and quantitatively in the following
experiments. First, we use some testing images from the salient
object database Free 1000 [29]. Fig. 7(a) displays all the images
we used, including #1_47_47781, #2_78_78470, #1_47_47334,
#3_95_95684, #1_58_58944, #0_0_272, #1_47_47779, #0_0_77,
#0_0_284, #0_5_5887 and #1_66_66254. Moreover, another auto-
matic image segmentation method (Saliency cut) [31] are chosen for
comparison. The results of our region saliency based on entropy
superpixels (RSBERS) are displayed in the second column of Fig. 7.
The third column of Fig. 7 shows the seeds obtained before relabel
scheme. Although these seeds can cover the object and background
comprehensively and uniformly, there still exist lots of mislabeled
seeds, especially for the examples in rows 1, 2 and 6 of Fig. 7.
Integrating the relabeling scheme, we can get an ideal seeds distribu-
tion as shown in the fifth column. The corresponding/ segmentation
results based on the seeds before and after the relabel scheme are
shown in the fourth and sixth columns respectively. The experiments
demonstrate that our proposed seeds relabeling strategy can effec-
tively reduce the mislabeled seeds and is helpful for improving the
performance of segmentation. The seventh column shows the seg-
mentation results of Saliency cut [31]. Finally, the ground truths are
shown in the eighth column. From the comparisons of segmentation
results, we can find that the method of Saliency cut can obtain
accurate segmentation results in most images, but there still exist

Table 1
Parameters setting of all used methods.

Feature descriptor
Number of scales S 2
Total number of the channels Nc 3
Basis of wavelet α 2
Local window size N 15

Entropy rate superpixels segmentation
Balancing parameter 0.5
Gaussian kernel bandwidth 5.0
Number of superpixels 200

Saliency estimate
RC

Spatial weighting 0.4
SF

Scaling factor 6
Control parameter 0.25

Random walks image segmentation
Free parameter 90

Seeds relabel scheme
K 5
Number of iterations 4

Fig. 10. The quantitative comparisons of the PRI, GCE, VoI and BDE for our approach without relabeling, our method with relabeling and Saliency cut method [31] with the
indexes of rows (from top to bottom in Figs. 7 and 8) as the horizontal axis.
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error-segmentations in some images, especially for the results in rows
3, 4 and 8 in Fig. 7. Most of the segmentation results of our approach
are superior to the method of Saliency cut, and are closest to the actual
saliency objects (ground truths).

To further verify the performance of our proposed segmenta-
tion method, some testing images from the Berkeley segmentation
database BSD300 [57] are shown in Fig. 8(a), including #3096,
#12003, #196073, #124084, #135069, #253036, #41004, #12074
and #35070. We also choose the Saliency cut method [31] for
comparison. Actually, representative images with the different
amount of feature information are selected in our experiments.
First, the images of starfish and coral contain rich texture informa-
tion. Second, there are also multiple objects, such as the image in
the sixth row. From the comparisons of segmentation results, we
can draw the conclusion that our approach has better perfor-
mance. For example, the plane and the bird are images of one
object with simple background, and we can find the object
accurately even without relabel scheme. For the images of flowers,
starfish, deer, elephant and coral, we can obtain satisfied segmen-
tation results after the relabel scheme. As for the snake image
presented in the third row of Fig. 8 is a challenging case, and an
unsatisfied result was obtained. This is because the target and
background have little differences in this image, which affects the
seeds location and then the segmentation result.

We further test the segmentation results of our proposed
automatic image segmentation method when compared with the
classical interactive random walks segmentation algorithm [16].
The testing images are also from the salient object database Free
1000 [29]. From the comparison experiments, we can find that
manual interactions may cause inaccurate or even incorrect
segmentation results and involve more interactions to obtain
satisfied results (as shown in the middle columns of Fig. 9).
The images with superimposed seeds, which obtained by our
proposed automatic seeds extraction method and the correspond-
ing segmentation results, are displayed in the last column of Fig. 9.
The comparison of segmentation results demonstrate the same
conclusions as that of Figs. 7 and 8, which verify that our approach
can obtain comprehensively and uniformly seeds position auto-
matically and thus excellent segmentation results. Considering
that the proposed method is an automatic segmentation method,
does not require any user interaction, and is more promising in the
practical application.

4.3. Quantitative comparisons and running time

The quantitative comparisons are also important for objectively
evaluating the performance of our proposed methods. We choose the
four state-of-the-art performance measures simultaneously for

quantitative evaluation. The performance measures contain probabil-
istic rand index (PRI) [60], variation of information (VoI) [61], global
consistency error (GCE) [57] and boundary displacement error (BDE)
[62]. Meanwhile, we should notice that the value of PRI and
GCE range from 0 to 1, the value of VoI and BDE range from 0 to 1.
The larger of PRI, the closer of the segmentation result to the ground
truths. The smaller of VoI, GCE and BDE, the closer of the segmentation
result to the ground truths. The sources codes of the standard
image segmentation indices (PRI, VoI, GCE and BDE) can be down-
loaded from the websites [63].

Fig. 10 shows the quantitative comparisons of the PRI, VoI, GCE
and BDE for the three compared approaches with the indexes of
rows (from top to bottom in Figs. 7 and 8) as the horizontal axis. To
analyze the four charts of Fig. 10, we can observe that the values of
the four performance measures for our approach with relabel
scheme are almost all better than the Saliency cut method and
our method without relabel scheme, but they are slightly worse
than the Saliency cut approach for the fifth and sixth images of
Fig. 7 and the eighth image of Fig. 8. In addition, we can further
demonstrate the superior accuracies of our method with relabeling
by using the mean value of the four performance measures in
Table 2. Taking into account the mean (PRI, GCE, VoI, BDE) values,
which are (0.9307, 0.0541, 0.2856, 8.3813), (0.9694, 0.0238, 0.1535,
1.2063) and (0.9287, 0.0539, 0.3215, 6.0241) for our method without
relabel scheme, our method with relabel scheme and Saliency cut
method respectively. These statistics indicate that our approach
with relabeling can achieve the highest accuracies in the statistical
sense when compared with the other two methods. Additionally,
the quantitative comparisons of (PRI, VoI, GCE, BDE) values marked
in Fig. 9 also verify that our approach can perform exactly similar as
the classical interactive segmentation method, which involve very
sufficient user interactions.

The average running time of the proposed automatic segmen-
tation algorithm framework on Berkeley segmentation database
BSD300 (481�321 pixels) are reported in Table 3. Including
feature descriptor construction, entropy rate superpixels, saliency
estimate, affinity propagation clustering, seeds relabel scheme,
random walks algorithm and the total cost of the framework.
All these experiments are performed on a notebook which is
equipped with a 2.40 GHz Intel(R) Core(TM) i3 CPU and 4 GB RAM.
The whole system is implemented in MATLAB using OPENCV
1.0 library. Some of the most time consuming operations were
implemented in Cþþ and interfaced with MATLAB through mex-
files. Some popular implementations were used the online avail-
able Cþþ or MATLAB code, such as entropy rate superpixel
segmentation, affinity propagation etc.

5. Conclusion

In this paper, an automatic image segmentation approach is
proposed by combining interactive random walks method with an
automated seeds extraction method. We first put forward the
region saliency based on entropy rate superpixel (RSBERS), which
integrates the entropy rate superpixel segmentation method
and saliency estimate approach. It can obtain superior saliency
estimate results and improve the accuracy of seeds distribution.
Then, we apply the powerful the affinity propagation clustering

Table 2
Average performance for the experiments of Figs. 7 and 8 (bold indicates best of all
the algorithms).

Methods PRI GCE VoI BDE

Saliency cut [31] 0.9287 0.0539 0.3215 6.0241
Our method without relabeling 0.9307 0.0541 0.2856 8.3813
Our method with relabeling 0.9694 0.0238 0.1535 1.2063

Table 3
Average running time for all the method we used on the Berkeley segmentation database BSD300 [57].

Method Construct feature
descriptor

Entropy rate
superpixels

Saliency
estimate

Affinity propagation
clustering

Random walks
algorithm

Seeds
relabel

Total
cost

Average cost 1.37s 2.82s 0.76s 4.73s 1.57s 0.62s 13.14s
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algorithm to each superpixels region to get representative pixels,
which are then labeled by a fixed threshold to obtain seeds.
Meanwhile, a seeds relabeling method is presented and can be
used to reduce the mislabeled seeds. Finally, we provide compre-
hensively and uniformly seeds position automatically, which is
important to the following randomwalks segmentation algorithm.
In addition, to improve the powerful feature discriminating ability,
a new feature descriptor is designed by integrating coordinates,
color and texture information. At last, the comprehensive qualita-
tive and quantitative experiments demonstrate that our proposed
method can obtain satisfactory segmentation results. As a future
work, we would like to investigate saliency detection algorithms
to handle cluttered and textured background and study more
powerful feature descriptor to acquire the more reliable and
efficient segmentation results.
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